Pten deletion in adult neural stem/progenitor cells enhances constitutive neurogenesis.
نویسندگان
چکیده
Here we show that conditional deletion of Pten in a subpopulation of adult neural stem cells in the subependymal zone (SEZ) leads to persistently enhanced neural stem cell self-renewal without sign of exhaustion. These Pten null SEZ-born neural stem cells and progenies can follow the endogenous migration, differentiation, and integration pathways and contribute to constitutive neurogenesis in the olfactory bulb. As a result, Pten deleted animals have increased olfactory bulb mass and enhanced olfactory function. Pten null cells in the olfactory bulb can establish normal connections with peripheral olfactory epithelium and help olfactory bulb recovery from acute damage. Following a focal stroke, Pten null progenitors give rise to greater numbers of neuroblasts that migrate to peri-infarct cortex. However, in contrast to the olfactory bulb, no significant long-term survival and integration can be observed, indicating that additional factors are necessary for long-term survival of newly born neurons after stroke. These data suggest that manipulating PTEN-controlled signaling pathways may be a useful step in facilitating endogenous neural stem/progenitor expansion for the treatment of disorders or lesions in regions associated with constitutive neurogenesis.
منابع مشابه
Pten deletion in adult hippocampal neural stem/progenitor cells causes cellular abnormalities and alters neurogenesis.
Adult neurogenesis persists throughout life in restricted brain regions in mammals and is affected by various physiological and pathological conditions. The tumor suppressor gene Pten is involved in adult neurogenesis and is mutated in a subset of autism patients with macrocephaly; however, the link between the role of PTEN in adult neurogenesis and the etiology of autism has not been studied b...
متن کاملAdult Hippocampal Neurogenesis and Memory
Adult neurogenesis, a concept emergent in the late 1990s, is the generation of new neurons in the adult brain. This process occurs thank to cells who have this proliferative feature, named as Neural Stem Cells (NSCs). Neural Stem Cells (NSCs) are primary progenitors who can generate the two neural types (neurons and glia). Classically it was assumed that NSCs are only present in the embryo, but...
متن کاملAdult Hippocampal Neurogenesis and Memory
Adult neurogenesis, a concept emergent in the late 1990s, is the generation of new neurons in the adult brain. This process occurs thank to cells who have this proliferative feature, named as Neural Stem Cells (NSCs). Neural Stem Cells (NSCs) are primary progenitors who can generate the two neural types (neurons and glia). Classically it was assumed that NSCs are only present in the embryo, but...
متن کاملEzh2 regulates adult hippocampal neurogenesis and memory.
Adult neurogenesis is thought to be crucial for preserving cognitive functions, which is tightly controlled by various epigenetic regulators. As the methyltransferase of histone H3K27, the role of Ezh2 in neurogenesis of adult mice and its mechanism of action are largely unknown. Here, we show that Ezh2 is expressed in actively dividing neural stem cells (NSCs)/progenitor cells as well as matur...
متن کاملInducible and conditional deletion of extracellular signal-regulated kinase 5 disrupts adult hippocampal neurogenesis.
Recent studies have led to the exciting idea that adult-born neurons in the dentate gyrus of the hippocampus may play a role in hippocampus-dependent memory formation. However, signaling mechanisms that regulate adult hippocampal neurogenesis are not well defined. Here we report that extracellular signal-regulated kinase 5 (ERK5), a member of the mitogen-activated protein kinase family, is sele...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 29 6 شماره
صفحات -
تاریخ انتشار 2009